硬件层面,也就是所谓的硬件加速, CPU、GPU、FPGA、ASIC。CPU与GPU相比在大数据多任务处理上,肯定GPU更占优势。FPGA与GPU相比,在兼顾了灵活性的基础上,无论是计算能力和功耗性能上都要更强,缺点是性价比太低。ASIC是的,其他的硬件形态都是无法比拟的。
综上来看,内存和带宽是限制证明生成的主要瓶颈。对于显卡来说,这里的内存指的是显存,并不是主板上的内存,主板上的内存主要是参与CPU的计算。当然目前有些芯片技术可以打通主板上的内存和显存,让内存为显存计算来用。
为了打破英伟达一家独大的局面,前任全球芯片老大英特尔和多年老对手AMD对标CUDA都分别推出了OneAPI和ROCm,Linux基金会更是联合英特尔、谷歌、高通、ARM、三星等公司联合成立了民间号称“反CUDA联盟”的UXL基金会,以开发全新的开源软件套件,让AI开发者能够在基金会成员的任何芯片上进行编程,试图让其取代CUDA,成为AI开发者的开发平台。
早在2021年,英伟达就曾公开表示过“禁止使用转换层在其他硬件平台上运行基于CUDA的软件”,2024年3月,英伟达更是将其升级为“CUDA禁令”,直接添加在了CUDA的终用户许可协议中,已禁止用转译层在其他GPU上运行CUDA软件