静态熔融焊料的氧化根据液态金属氧化理论,熔融状态的金属表面会强烈的吸附氧,在高温状态下被吸附的氧分子将分解成氧原子,氧原子得到电子变成离子,然后再与金属离子结合形成金属氧化物.暴露在空气中的熔融金属液面瞬间即可完成整个氧化过程,当形成一层单分子氧化膜后,进一步的氧化反应则需要电子运动或离子传递的方式穿过氧化膜进行,静态熔融焊料的氧化速度逐渐减小;熔融的SnCu0.7比Snpb37合金氧化的要快.
另外,不同温度下SnO2与PbO的标准生成自由能不同,前者生成自由能低,更容易产生,这也在一定程度上解析了为什麽无铅化以后氧化渣大量的增加.表一列出了氧化物的生成Gibbs自由能,可以看出SnO2比其他氧化物更易生成.通常静态熔融焊锡的氧化膜为SnO2和SnO的混合物. 氧化物按分配定律可部分溶解于熔融的液态焊料,同时由于溶差关系使金属氧化物向内部扩散,内部金属含氧逐步增多而使焊料质量变差,这在一定程度上可以解释为何经过高温提炼(或称还原)出来的合金金属比较容易氧化,且氧化渣较多;氧化膜的组成,结构不同,其膜的生常速度,生长方式和氧化物在熔融焊料中的分配系数将会有很大差异,而这又和焊料的组成密切相关.此外,氧化还和温度,气相中氧的分压,熔融焊料表面对氧的吸收和分解速度,表面原子和氧原子的化合能力,表面氧化膜的致密度,以及生成物的溶解,扩散能力等有关.
波峰高度的控制
波峰高度的控制不仅对于焊接质量非常重要,对于减少锡渣也有帮助。首先,波峰不宜过高,一般不应超过印刷电路板厚度方向的1/3,也就是说波峰顶端要超过印刷电路板焊接面,但是不能超过元器件面。同时波峰高度的稳定性也非常重要,这主要取决于设备制造商。从原理上讲,波峰越高,与空气接触的焊锡表面就越大,氧化也就越严重,锡渣就越多。另一方面,如果波峰不稳,液态焊锡从峰顶回落时就容易将空气带入熔融焊锡内部,加速焊锡的氧化。
C,氧化渣机械泵波峰发生器中,存在着剧烈的机械搅拌作用,在熔融焊料槽内形成剧烈的漩涡运动,再加上设计的不合理造成的熔融焊料面的剧烈翻滚.这些漩涡和翻滚运动形成的吸氧现象,空气中的氧不断被吸入熔融焊料内部.由于吸入的氧有限,不能使熔融焊料内部的氧化过程进行得像液面那样充分,因而在熔融焊料内部产生大量银白色沙粒状(或称豆腐渣状)的氧化渣.这种渣的形成较多,氧化发生在熔融焊料内部,然后再浮向液面大量堆积,甚至占据焊料槽的大部分空间,阻塞泵腔和流道,后导致波峰高度不断下降,甚至损坏泵叶和泵轴;另一种是波峰打起的熔融焊料重新流回焊料槽的过程中增加了熔融焊料与空气中氧的接触面,同时在熔融焊料槽内形成剧烈的漩涡运动形成吸氧现象,从而形成大量的氧化渣.这两种渣通常占整个氧化渣量的70%,是造成浪费的.应用无铅焊料后将产生更多的氧化渣,且SnCu多于SnAgCu,典型结构是90%金属加10%氧化物.