公司秉持 “人本中和,诚信达道”的经营理念,真诚希望与社会各界朋友精诚合作,开发新型建材事业,共同创造美好未来,造福人类。希望新老客户惠顾!
a. 塑胶原料受热膨胀,热胀系数比金属大很多;
b.一般塑胶原料的刚度比金属低一数量级;
c. 塑胶原料的力学性能在长时间受热下会明显下降;
d.一般塑胶原料在常温下和低于其屈服强度的应力下长期受力,会出现形变;
e. 塑胶原料对缺口损坏很敏感;
f. 塑胶原料的力学性能通常比金属低的多,但有的复合材料的比强度和比模量高于金属,如果制品设计合理,会更能发挥起优越性;
g.一般增强塑胶原材料力学性能是各项异性的;
h.有些塑胶原料会吸湿,并引起尺寸和性能变化;
i.有些塑料是可燃的;
j. 塑胶原料的疲劳数据还很少,需根据使用要求加以考虑。
可挤出的塑料是热塑料——它们在加热时熔化并在冷却时再次凝固。熔化塑料的热量从何而来?进料预热和筒体/模具加热器可能起作用而且在启动时非常重要,但是,电机输入能量——电机克服粘稠熔体的阻力转动螺杆时生成于筒体内的摩擦热量——是所有塑料重要的热源,小系统、低速螺杆、高熔体温度塑料和挤出涂层应用除外。
对于所有其他操作,认识到筒体加热器不是操作中的主要热源是很重要的,因而对挤出的作用比我们预计的可能要小(见第11条原则)。后筒体温度可能依然重要,因为它影响齿合或者进料中的固体物输送速度。模头和模具温度通常应该是想要的熔体温度或者接近于这一温度,除非它们用于某具体目的像上光、流体分配或者压力控制。
在多数挤出机中,螺杆速度的变化通过调整电机速度实现。电机通常以大约1750rpm的全速转动,但是这对一个挤出机螺杆来说太快了。如果以如此快的速度转动,就会产生太多的摩擦热量而且塑料的滞留时间也太短而不能制备均匀的、很好搅拌的熔体。典型的减速比率在10:1到20:1之间。阶段既可以用齿轮也可以滑轮组,但是第二阶段都用齿轮而且螺杆定位在后一个大齿轮中心。
有时减速率与任务匹配有误——会有太多的能量不能使用——而且有可能在电机和改变速度的个减速阶段之间增加一个滑轮组。这要么使螺杆速度增加到超过先前极限或者降低速度允许该系统以速度更大的百分比运行。这将增加可获得能量、减少安培数并避免电机问题。在两种情况中,根据材料和其冷却需要,输出可能会增加。