冷却塔是集空气动力学、热力学、流体学、化学、生物化学、材料学、静、动态结构力学,加工技术等多种学科为一体的综合产物。水质为多变量的函数,冷却更是多因素,多变量与多效应综合的过程 。
外置式水轮机如何能达到电机驱动效率的关键是:了解冷却塔循环水系统设计中的富余能量,同时水轮机的叶轮设计也是关键,富余能量的组成主要由以下6个部分:
1)循环水系统设计时必须考虑的余量值;
2)换热设备的势能利用;
3)水轮机的自身调节能力;
4)循环水系统的动能转换效率;
5)阀门没有开启到位时,由阀门所消耗的能量。
6)低流量通过合并再分流方法满足系统要求。
冷却塔与换热设备之间由水泵来循环驱动,外置式水轮机利用回水压力能来转换驱动水轮机作功带动风机,一般按照三个冷却塔做节能改造,设计时流量偏大实际用量在60%左右,考虑到生产需求变化,节能改造方法是:二台塔为水轮机驱动,一台塔为电机驱动在夏季时段备用。
内置式水轮机
1.内置式水轮机安装在冷却塔风筒内的减速箱位置,水轮机连接管路必须进入风筒内部连接而完成。
2. 内置式水轮机安装在冷却塔风筒内,进、出水管路进入风筒内,风机运行中这些管路所产生扰流而形成吸震导致风机叶片震动,风机使用寿命受到影响。
3. 内置式水轮机设备安装在冷却塔风筒内的潮湿环境中,维护难度加大、成本相应增加。
4. 内置式水轮机的工况在风筒内,高热潮湿的环境使各类传感设备容易损坏,无法准确传递信息。
5. 当流量远远低于设计值时,内置式水轮机安装在冷却塔风筒内很难采用合并再分流的方法,实现借用旁塔的部分流量满足水轮机作功后再分布给旁塔平均布淋。