在卤代聚脂中加入3%-4%的三氧化钼,可使临界氧指数提高3%-4%,燃烧时碳的生成量增加4%左右,使烟雾量减少3%。
缓蚀剂:钼酸盐毒性非常低,对添加在缓蚀剂中的有机添加剂的腐蚀性很弱,常用在空调冷却水和加热系统的构造中,防止低碳钢被腐蚀。
钼具有良好的导电性和耐高温性,热膨胀系数与玻璃相近,被广泛用于制造螺旋灯丝的芯线、引出线及挂钩等部件。此外,钼丝也是理想的电火花线切割机床用电极丝,能切割各种钢材和硬质合金,其放电加工稳定,能有效提高模具精度。
单层的辉钼材料具有良好的半导体特性,有些性能超过现在广泛使用的硅和石墨烯,很有可能成为下一代半导体材料。美国加州纳米技术研究院已经成功使用MoS2制造出了辉钼基柔性微处理芯片,这个微芯片只有同等硅基芯片的20%大小,功耗极低,而辉钼制成的晶体管在待机情况下的功耗为硅晶体管的十万分之一,而且比同等尺寸的石墨烯电路更加廉价,其电路也有很强的柔性,极薄,可以附着在人体皮肤之上。
钼成为耐热和防腐的各种结构钢的重要成分,也成为有色金属-镍和铬合金的重要成分。
金属钼的工业生产以及在电气工业上的广泛应用,大约是与金属钨在同一年代(1909年)开始的,其中一个原因就是生产这两种致密金属的粉末冶金法和压力加工工艺已研究成功,完全可应用于生产,另一个原因是一战的爆发导致了钨需求的剧增,而钨铁供应短缺加速了钼成为许多高硬度和耐冲击钢中钨的替代品。随着钼需求的增长,人们开始寻找钼的新来源,终人们在美国科罗拉多州发现了大型克莱麦科斯钼矿床,并与1918年开始开采。
随着钼行业的不断发展,钼原料消耗越来越大,可采资源越来越少,为了保护环境,提高钼资源利用率,自上世纪80年代中期开始,发达国家就开始关注钼再生资源特别是含钼的废催化剂的利用价值,像美国在1995年从废催化剂中回收的钼已达3800吨,占总供给量30%左右。此外,钼再生资源中钼的含量通常高于钼矿石,从中提取钼及其他金属的成本低于从矿石中提取,能源消耗也比较低,废气排放量也小,因而钼的回收利用成为了钼行业的关注点。