移动通信基站天馈系统的路径如下:基站-1/2跳线-避雷器-8/7馈线(或者4/5馈线)-短跳线-天线,除了天线系统有一定增益外,其它线路或者器件都有一定损耗。其中GSM900系统:1/2跳线损耗是7DB/100米,7/8馈线损耗是4.03DB/100米,5/4馈线损耗是2.98DB/100米,连接接头损耗是0.05DB/个接头,避雷器损耗约0.5DB。其中GSM1800系统:1/2跳线损耗是 8 DB/100米,7/8馈线损耗是5.87DB/100米,5/4馈线损耗是4.31DB/100米,其中CDMA2000系统:由于频段和GSM900相差不多,因此损耗也差不多相同。一般单个GSM900基站天馈系统损耗的计算方法如下:1/2跳线大约2米,损耗约0.14DB,避雷器损耗约0.5DB,接头损耗0.058=0.4DB,长馈线按照7/8损耗为70米0.0403DB/米=2.821DB,合计损耗约3.861DB。 关于馈线,很多朋友都问我同样一个问题多少W的功率经过几十米的馈线还剩下多少W,而对增益部分基本不过问,似乎功率是鉴定馈线的标准。开始我也很疑惑,因为此问题在数据表上是无法体现的,馈线对应的数据是在不同频率上的增益衰减常数,而发射机的数据主要就是功率,两者看似相干但是又是那么的模糊,架设天线中关键部分在于馈线,可能80%的朋友只关心经过多少米的馈线自己还剩下多少功率,而忽略了更多的细节,下面找了一些相关资料和大家探讨一下我们架设天线中遇到的问题和需要思考的几个方面。天线的高度与馈线的长度、发射功率与增益 众所周知,天线架设的越高,信号传播就越远,使用5W的手台站在发射塔的顶端比用15W的车台在城市里传播的远的多,我们架设天线的目的也正是如此,但是因为实际条件的限制不可能每位HAM都住楼顶,这是就需要通过连接不同长度的馈线来增加天线的高度。馈线的长度越长损耗越大,我们就是要找到一个平衡点,这个平衡点就是我们既得到了满意的天线高度,衰减又控制在我们所能接受的范围内,对于初学的朋友一定要走出功率的怪圈,我们对于数据的严谨是为了后得到可观的增益与足够的发射高度,通俗的来讲虽然功率可以体现出发射机的性能,但是我们的馈线不是电炉子上的电热丝,传播效果完全取决于后的增益值和传播高度。 在这里我们先将DB DBm DBi看成同等,否则无法简单的产出增益与功率的关系,当然实际上DB是馈线的增益损耗单位,这个单位是相对的,而DBm是发射机的增益单位,而DBi是天线的增益单位,在下面有详细的资料,如果区别对待就太深奥了 有对科学特别认真的朋友可以详细看一下后面关于这几个单位的分析。 发射功率与增益 无线电发射机输出的射频信号,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接收下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。因此在无线网络的工程中,计算发射装置的发射功率与天线的辐射能力非常重要。 Tx是发射(Transmits)的简称。无线电波的发射功率是指在给定频段范围内的能量,通常有两种衡量或测量标准: 功率(W) - 相对1瓦(Watts)的线性水准。 增益(dBm) - 相对1毫瓦(Milliwatt)的比例水准。 两种表达方式可以互相转换: dBm = 10 x log[ 功率 mW] mW = 10 [ 增益 dBm / 10 dBm] 在无线系统中,天线被用来把电流波转换成电磁波,在转换过程中还可以对发射和接收的信号进行放大,这种能量放大的度量成为 增益(Gain)。 天线增益的度量单位为dBi。 由于无线系统中的电磁波能量是由发射设备的发射能量和天线的放大叠加作用产生,因此度量发射能量同一度量-增益(dB),例如,发射设备的功率为100mW ,或 20dBm;天线的增益为10dBi,则: 发射总能量=发射功率(dBm)+天线增益(dBi) = 20dBm + 10dBi = 30dBm 或者: = 1000mW = 1W 在小功率系统中每个dB都非常重要,特别要记住3dB法则。 每增加或降低3dB,意味着增加一倍或降低一半的功率: -3 dB = 1/2 功率 -6 dB = 1/4 功率 +3 dB = 2x 功率 +6 dB = 4x 功率 例如,100mW的无线发射功率为20dBm,而50mW的无线发射功率为17dBm,而200mW的发射功率为23dBm。 0dbm=0.001w 左边加10=右边乘10 所以0+10DBM=0.001*10W 即10DBM=0.01W 故得20DBM=0.1W 30DBM=1W 40DBM=10W 还有左边加3=右边乘2,如40+3DBM=10*2W,即43DBM=20W 例如 机器20W 在400MHZ频率上使用30米50-